COMPOSITE POLES AND PRODUCTS FOR POWER TRANSMISSION AND DISTRIBUTION

GET THE SHAKESPEARE COMPOSITE ADVANTAGE

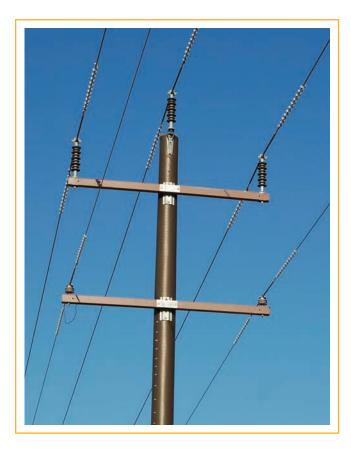
LEADERS CHOOSE LEADERS

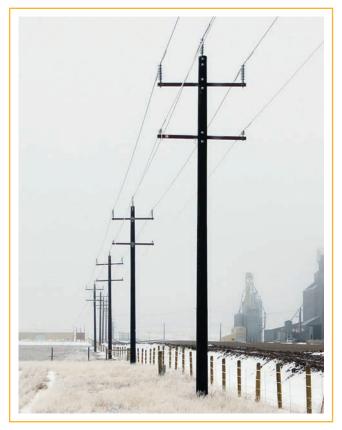
Crafting composite innovations for more than 65 years, Shakespeare designs and produces exceptionally tough, durable products for customers requiring superb performance.

 Shakespeare's ruggedly engineered FRP poles are essential electric utility assets for today's modern, resilient grid.

As part of Valmont Composite Structures, Shakespeare is a US-based industry leader with local expertise and global resources.

 For your next order, choose Shakespeare, the composite brand North American utilities have been relying on for decades.


SHAKESPEARE TUFF-POLETM PRODUCTS & ACCESSORIES


Shakespeare engineered composite Tuff-Pole structures are ideal for the modern-day, grid-reliability needs of electric utilities.

Resilient and durable, our transmission and distribution poles, crossarms, braces, pole-top extensions, and substation products are designed to withstand harsh environments for decades of service.

- LIGHTWEIGHT DESIGN easy to transport to your installation site and individual composite poles may be lifted and carried by your crew into hard-to-reach locations.
- EASE OF INSTALLATION composite poles can be directly buried into most any soil type, just as wood poles are.
- LONG LASTING crafted to the core with embedded UV inhibitors, the pole is covered with a polyester veil which is coated with UV-protective finish.
- LOW MAINTENANCE rust-proof and corrosion-resistant, pole maintenance costs are virtually eliminated; unlike wood, composites are impervious to insects, woodpeckers, and weather.
- ENVIRONMENTALLY SOUND Unlike treated wood, Shakespeare composites need no harmful chemicals to protect from decay or insects. Also, easier to lift and install on ecologically sensitive land.
- SAFE non-conductive composite construction is ideal for installation in highly populated areas such as neighborhoods, parking lots, and recreational facilities.
- ATTRACTIVE strong visual appeal is provided with either our grey or dark-bronze standard colors. Custom color options may be available on large-quantity orders. Consult factory for details.

CONTENTS

PAGE 4	Learn how Shakespeare Tuff-Pole™ composites compare to other materials
PAGE 5	Durability demonstrated – Montana and California installations
PAGE 6	The advantage of Shakespeare composites
PAGE 7	Composite pole strength table and ordering template
PAGE 8-11	Tuff-Pole product specification tables
PAGE 12-13	Shakespeare composite crossarms
PAGE 14-15	Composite braces (X-braces, Knee-braces, Vee-braces)
PAGE 16-17	Pole top extensions
PAGE 18-19	Substation products, including SafeFence™, buss supports, and switch supports
PAGE 20	Generations of innovations – a history of firsts

©2017 Valmont Composite Structures. All rights reserved.

Valmont Composite Structures strives for continuous product improvement and development. As a result, certain changes in standard equipment, options, price, etc., may have occurred after the publication of this brochure. Some photographs and specifications may not be identical to current production. Valmont Composite Structures reserves the right to change product design and specifications at any time without incurring obligations.

ENGINEERED COMPOSITE STRUCTURES PROVIDING UNMATCHED DURABILITY

If you were able to combine the advantages of steel, aluminum, PVC, plastic, and wood into a single structure, the resulting combination may very well be a Tuff-Pole[™] composite product from Shakespeare. Strong yet lightweight, non-corrosive, dielectric, rust proof, and environmentally sound ... all these qualities are integrated into a single precision-engineered composite solution.

SMART ALTERNATIVE TO OTHER MATERIALS

Shakespeare Tuff-Pole structures feature a fiberglass reinforced plastic (FRP) composite construction that will often simply outlast wood and metal structures under the same climatic conditions. Further, compared to other materials, direct-embed composite poles are easy to install – potentially saving time, manpower, equipment, and money during installation. Unlike wood, our poles are completely free of knots, twists and imperfections that can accelerate wood-pole failure.

LONG-LIFE DURABILITY – Designed for use in all climate types and with remarkable performance longevity, Shakespeare products will not splinter and rot like wood, nor rust like metal. Unlike wood, composites are impervious to insects, woodpeckers, and weather. The specified strength factors remain intact over the product lifespan.

Shakespeare non-corroding composites will not deteriorate in extreme heat or cold, in salt-air climates, nor in desert installation. Regardless of humidity, they will not rust, ever, and they easily withstand harsh, natural, and industrial environments.

A TIME-PROVEN INNOVATION

DISPLAYING LONG LASTING PERFORMANCE

Shakespeare has been crafting composite products for utilities and municipalities for generations. Likewise, our valued customers count on Shakespeare year-after-year because our products are built to last for decades.

In Montana's Big Sky Country, near Glacier National Park, Shakespeare composite utility poles are subjected to some of the harshest natural conditions in the United States (see photos below, left and center). Sub-zero temperatures and blizzards are common in winter. In summer, blistering heat can permeate the wide-open spaces. For human safety and security, electric-power reliability is essential.

In a similar manner, the high-desert ecosystem adjacent to Sequoia National Park dishes out intense ambient conditions year-round (see photo below, right).

These photos display Shakespeare poles which have already been in service for more than 20 years. Uncommonly durable, Tuff-Pole engineered composites are designed to withstand harsh natural elements, enabling our utility customers to successfully serve those who reside in rugged, demanding environmental conditions.

SUPERB WEATHERING & UV PROTECTION – Shakespeare provides triple protection from ambient ultraviolet exposure. A proven process with more than 25 years of experience in the field.

- 1. During the production process, 100% of the glass-fiber strands and fiberglass-mat components are saturated with UV-inhibitor-laden resins.
- 2. Those materials are then covered with a tightly woven fiberglass veil that is saturated with a UV-inhibitor. This veil provides a resin-rich surface that controls blooming.
- 3. In post-production, the product receives an exterior coating of our high-performance, UV-protective urethane finish to help prevent color fading over time for long-lasting good looks.

CHOOSE SHAKESPEARE FOR YOUR NEXT PROJECT SERVING UTILITIES WITH EXCELLENCE, INTEGRITY

A pioneer in developing strong, durable composite products for the utility industry, Shakespeare's knowhow and industry leadership are one of a kind.

Our team listens carefully to customer feedback and responds with products that meet or exceed utility specifications and expectations from across North America and beyond. Shakespeare's growing customer base appreciates the many advantages our transmission and distribution poles, crossarms, braces, pole tops, and substation composite products provide over other materials.

- EASE OF INSTALLATION Up to one-third the weight of wood, Shakespeare composite structures can be carried at installation sites, saving utilities time and money. The sturdy, lightweight design is ideal for hard to reach areas, including homeowner's backyards, steep grades, and environmentally sensitive locations.
- SAFE The high-strength to low-weight ratio of composites as compared to wood and metal may help
 alleviate possible injury to linemen, warehouse staff, and other utility personnel. Shakespeare poles
 are easier to transport, lift, and install than unwieldy wood or metal products. The composite material
 will not splinter like wood. Also, composite materials are non-conductive.
- LOW MAINTENANCE Shakespeare's 100% maintenance-free construction saves time and money over the product lifetime. Our non-corroding composites will not deteriorate in salt-air climates, desert heat or acid rain. Regardless of humidity, they will not rust, ever, and they easily withstand harsh, industrial environments.
- SUPERB CUSTOMER CARE Utility customers count on Shakespeare year-after-year because of the quality of our products and great care with which our agent network and factory respond to daily customer needs. Also, after significant storm events, when a rapid response is imperative, Shakespeare consistently meets the needs of utilities striving to restore power. For example, after a recent hurricane caused widespread power outages, Shakespeare produced and shipped more than 500 composite crossarms to 3 utility customers within 24 hours of the orders being received.
- CONTACT SHAKESPEARE Since 2014, Shakespeare has been part of Valmont Composite Structures. A global leader in engineering and manufacturing structures for transmission and distribution applications, Valmont is a proven resource for utility customers across North America, Europe, Africa, Asia, India, and Australia.

ENGINEERED COMPOSITE

COMPOSITE TUFF-POLE

COMPOSITE POLES MAXIMUM STRENGTH AVAILABLE (CLASS EQUIVALENT)

MAXIMUM

ANSI TIP LOAD 2' FROM TOP

>15,500#

>15,500#

>15,500#

>15,500#

15,500#

14,100#

12,900#

11,800#

10,900#

10,000#

9,400#

8,800#

8,300#

7,900#

7,500#

6,500#

5,000#

4,200#

3,600#

3,000#

OVERALL

POLE LENGTH

30'

35'

40'

45'

50'

55'

60' 65'

70'

75'

80'

85'

90'

95'

100'

105'

110'

115' 120'

125'

@STD BURIAL DEPTH (10% +2')

MAXIMUM

GROUNDLINE

MOMENT (IN)KIPS

>4,278

>5,115

>5,952

>6,789

7,626

7,699

7,740

7,717

7,717

7,620

7,670

7,656

7,669

7,726

7,740

7,059

5,700

5,015

4,493

3,906

All poles over 50' are two-piece poles; poles over 90' are three-piece poles.

MAXIMUM

GROUNDLINE MOMENT

FT/LBS

>356,500

>426,250

>496,000

>565,750

635,500

641,550

645,000

643,100

643,100

635,000

639,200

638,000

639,100

643,850

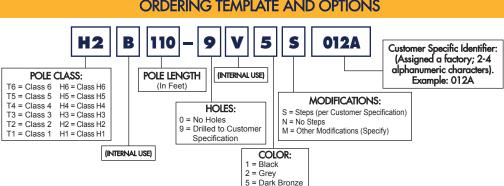
645,000

588,250

475,000

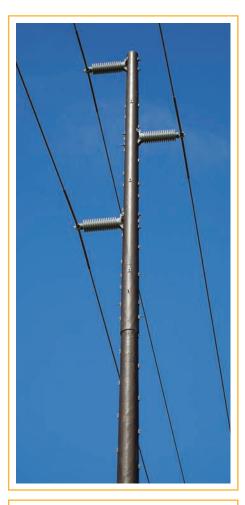
417,900

374,400


325,500

* WOOD POLE REFERENCE DATA

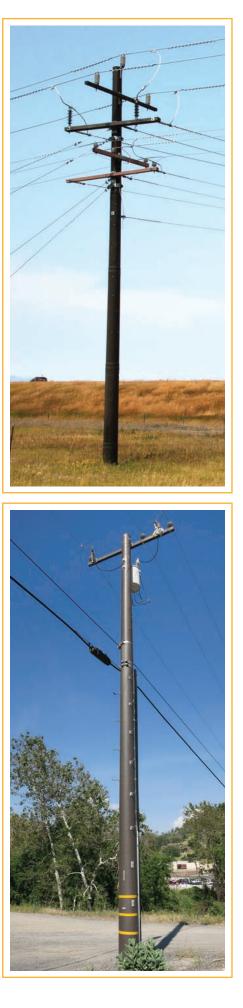
Required Load Rating =	Design Load X Overload Factor
Required Lodd Rulling =	Strength Compensation Factor
Strength Compensation	on Factors:
Wood Poles:	0.65
Engineered Composit (Fiber reinforced poly	
Ref: Tables 253-1 and 261-1A.	NESC (2007 National Electric Safety Code


Shakespeare's engineering composite Tuff-Poles do not require strength compensation. The strength you install does not change over time.

ORDERING TEMPLATE AND OPTIONS

COMPOSITE TUFF-POLE

		ANSI		Di	ameter (inch	Weight (lbs.)				
Length (Feet)	Class	Tip Load	Style#	Butt	Groundline	Тір	Weight (sum)	Section 1	Section 2	Section 3
100	H6	7410	H6B100	22.49	20.81	9.9	4,622	2,587	1,802	233
95	-		H6B95	22.38	20.77	10.27	4,175	2,402	1,663	11
90			H6B90	22.26	20.72	10.95	3,823	2,217	1,525	8
85			H6B85	22.14	20.67	12.09	3,366	2,033	1,333	
80			H6B80	22.14	20.74	12.38	2,994	2,033	961	
75			H6B75	22.03	20.7	12.86	2,597	1,848	749	
70			H6B70	21.91	20.65	13.36	2,226	1,663	563	
65			H6B65	21.91	20.72	13.88	2,066	1,663	403	
60			H6B60	21.79	20.67	14.41	1,748	1,478	270	
55			H6B55	21.67	20.62	14.95	1,457	1,294	163	
50			H6B50	21.67	20.69	15.07	1,416	1,416		
45			H6B45	21.55	20.64	15.55	1,109	1,109		
40			H6B40	21.43	20.59	16.05	836	836		
35			H6B35	21.31	20.54	16.56	599	599		
105	H5	6500	H5B105	22.38	20.63	9.42	4,543	2,402	1,802	33
100			H5B100	22.26	20.58	9.9	4,113	2,217	1,663	23
95			H5B95	22.14	20.53	10.27	3,667	2,033	1,524	11
90			H5B90	22.14	20.6	10.95	3,500	2,033	1,386	8
85			H5B85	22.03	20.56	11.93	3,048	1,848	1,200	
80			H5B80	21.91	20.51	12.78	2,624	1,663	961	
75			H5B75	21.91	20.58	12.71	2,305	1,663	642	
70			H5B70	21.79	20.53	13.22	1,947	1,478	469	
65			H5B65	21.79	20.6	13.74	1,801	1,478	323	
60			H5B60	21.67	20.55	14.27	1,496	1,294	202	
55			H5B55	21.55	20.5	14.95	1,272	1,109	163	
50			H5B50	21.55	20.57	14.9	1,214	1,214		
45			H5B45	21.43	20.52	15.39	924	924		
40			H5B40	21.43	20.59	16.05	836	836		
35			H5B35	21.31	20.54	16.56	599	599		
105	H4	5655	H4B105	22.1	20.35	9.42	3,827	1,963	1,525	33
100			H4B100	22.03	20.35	9.76	3,421	1,848	1,386	18
95			H4B95	21.98	20.37		3,161	1,767		14
90			H4B90	21.91	20.37	11.08	2,880	1,663	1,109	10
85			H4B85	21.85	20.38	11.69	2,582	1,571	1,011	
80			H4B80	21.79	20.39	12.15	2,259	1,478	781	
75			H4B75	21.72	20.39	12.62	1,954	1,374	580	
70			H4B70	21.67	20.37	13.12	1,701	1,294	407	
65			H4B65	21.6	20.41	13.74	1,501	1,178	323	
60			H4B60	21.55	20.41	14.27	1,311	1,109	202	
55			H4B55	21.33	20.43	14.95	1,145	982	163	
50			H4B50	21.47	20.42	14.73	1,012	1,012	100	
45			H4B45	21.43		15.39	924			
40			H4B40	21.43	20.52	15.89		924		
35			H4B40	21.31	20.47	16.43	669	669		
110	H3	4875	H3B110	22.03	20.44	8.96	477	477	1 204	46
110	115	40/ 3	H3B105	22.03	20.21	9.26	3,699 3,401	1,848	1,386	28



				Di	ameter (inch	es)		Weigh	t (lbs.)	
Length	Class	ANSI Tip	Style#	Butt	Groundline	Tip	Weight	Section	Section	Section
(Feet)	elass	Load	Stylen	2011	oroonamic		(sum)	1	2	3
100			H3B100	21.91	20.23	9.76	3,051	1,663	1,201	187
95			H3B95	21.85	20.24	10.41	2,827	1,571	1,109	147
90			H3B90	21.79	20.25	11.08	2,556	1,478	970	108
85			H3B85	21.72	20.25	11.62	2,241	1,374	867	
80			H3B80	21.67	20.27	12.08	1,945	1,294	651	
75			H3B75	21.6	20.27	12.62	1,677	1,178	499	
70			H3B70	21.55	20.29	13.18	1,484	1,109	375	
65			H3B65	21.51	20.32	13.71	1,281	1,039	242	
60			H3B60	21.43	20.31	14.39	1,126	924	202	
55			H3B55	21.37	20.32	15.07	995	832	163	
50			H3B50	21.34	20.36	14.59	860	860		
45			H3B45	21.31	20.4	15.22	739	739		
40			H3B40	21.21	20.37	15.75	533	533		
35			H3B35	21.19	20.42	16.4	449	449		
115	H2	4160	H2B115	21.91	20.02	8.36	3,491	1,663	1,294	534
110			H2B110	21.85	20.03	8.81	3,178	1,571	1,201	406
105			H2B105	21.79	20.04	9.17	2,838	1,478	1,109	251
100			H2B100	21.72	20.04	9.76	2,612	1,374	1,051	187
95			H2B95	21.67	20.06	10.41	2,411	1,294	970	147
90			H2B90	21.64	20.1	11.08	2,256	1,247	901	108
85			H2B85	21.6	20.13	11.4	1,956	1,178	778	
80			H2B80	21.55	20.15	11.9	1,710	1,109	601	
75			H2B75	21.51	20.18	12.4	1,467	1,039	428	
70			H2B70	21.47	20.21	12.96	1,287	982	305	
65			H2B65	21.43	20.24	13.6	1,166	924	242	
60			H2B60	21.34	20.22	14.27	987	785	202	
55			H2B55	21.31	20.26	14.95	902	739	163	
50			H2B50	21.31	20.33	14.55	809	809		
45			H2B45	17.01	16.1	11.07	751	751		
40			H2B40	16.92	16.08	11.59	585	585		
35			H2B35	15.29	14.52	10.63	486	486		
30			H2B30	15.25	14.55	11.24	372	372		
120	H1	3510	H1B120	21.79	19.83	7.82	3,282	1,478	1,201	603
115			H1B115	21.72	19.83	8.23	2,941	1,374	1,109	458
110			H1B110	21.67	19.85	8.69	2,735	1,294	1,109	332
105			H1B105	21.64	19.89	9.31	2,443	1,247	970	226
100			H1B100	21.6	19.92	9.76	2,219	1,178	901	140
95			H1B95	21.55	19.94	10.41	2,027	1,109	808	110
90			H1B90	21.51	19.97	11.08	1,813	1,039	693	81
85			H1B85	21.47	20	11.16	1,604	982	622	
80			H1B80	21.43	20.03	11.7	1,405	924	481	
75			H1B75	21.37	20.04	12.25	1,180	832	348	
70			H1B70	21.34	20.08	12.88	1,066	785	281	
65			H1B65	21.31	20.12	13.56	981	739	242	
60			H1B60	21.31	20.12	14.23	941	739	202	
55			H1B55	21.24	20.19	14.92	787	624	163	
					20.17			724		

(9)

COMPOSITE TUFF-POLE

		ANSI		D	iameter (inch	es)	Weight (lbs.)			
Length (Feet)	Class	Tip Load	Style#	Butt	Groundline	Тір	Weight (sum)	Section 1	Section 2	Section 3
50			H1B50	21.19	20.21	14.37	607	607		
45			H1B45	16.92	16.01	10.94	647	647		
40			H1B40	16.85	16.01	11.48	502	502		
35			H1B35	15.29	14.52	10.63	449	449		
30			H1B30	15.19	14.49	11.15	322	322		
25			H1B25	15.16	14.53	11.78	258	258		
125	1	2925	T1B125	21.64	19.61	11.47	2,970	1,247	1,051	672
120			T1B120	21.64	19.68	11.99	2,734	1,247	970	517
115			T1B115	21.6	19.71	12.53	2,460	1,178	901	381
110			T1B110	21.55	19.73	13.09	2,276	1,109	901	260
105			T1B105	21.51	19.76	13.77	2,097	1,039	832	220
100			T1B100	21.47	19.79	14.45	1,920	982	751	187
95			T1B95	21.43	19.82	15.13	1,764	924	693	147
90			T1B90	21.43	19.89	15.81	1,633	924	601	108
85			T1B85	21.37	19.9	11.2	1,365	832	533	
80			T1B80	21.34	19.94	11.73	1,176	785	391	
75			T1B75	17.15	15.82	7.95	1,451	970	481	
70			T1B70	17.09	15.83	8.28	1,214	901	313	
65			T1B65	17.02	15.83	8.73	1,050	808	242	
60			T1B60	16.97	15.85	9.34	903	751	152	
55			T1B55	16.89	15.84	10.01	769	647	122	
50			T1B50	16.81	15.83	10.14	607	607		
45			T1B45	16.85	15.94	10.82	554	554		
40			T1B40	15.96	15.12	10.63	502	502		
35			T1B35	15.19	14.42	10.49	365	365		
30			T1B30	14.47	13.77	10.43	297	297		
25			T1B25	11.88	11.25	8.59	258	258		
125	2	2405	T2B125	21.51	19.48	6.93	0			
120			T2B120	21.47	19.51	7.4	0			
115			T2B115	21.43	19.54	7.91	0			
110			T2B110	21.43	19.61	8.46	1,883	924	693	260
105			T2B105	21.37	19.62	9.1	1,751	832	693	22
100			T2B100	21.37	19.69	9.76	1,712	832	693	18
95			T2B95	21.34	19.73	10.41	1,486	785	554	14
90			T2B90	21.31	19.77	11.08	1,401	739	554	10
85			T2B85	21.31	19.84	10.87	1,139	739	400	
80			T2B80	17.04	15.64	7.36	1,373	832	541	
75			T2B75	17.15	15.82	7.76	1,233	832	401	
70			T2B70	17.04	15.78	8.2	1,113	832	281	
65			T2B65	17.04	15.85	8.84	935	693	242	
60			T2B60	17.04	15.92	9.49	895	693	202	
55			T2B55	16.92	15.87	10.15	856	693	163	
50			T2B50	16.81	15.83	10.14	607	607		
45			T2B45	16.73	15.82	10.64	416	416		
40			T2B40	15.82	14.98	10.42	376	376		
35			T2B35	15.16	14.39	10.44	337	337		

		ANSI		D	iameter (inch	es)	Weight (lbs.)			
Length (Feet)	Class	Tip Load	Style#	Butt	Groundline	Тір	Weight (sum)	Section 1	Section 2	Section 3
20				14.47	10.77	10 (0	0.07	0.07		
30			T2B30	14.47	13.77	10.43	297	297		
25		1050	T2B25	11.88	11.25	8.59	258	258	(1)	100
90	3	1950	T3B90	21.21	19.67	11.08	1,078	554	416	108
85 80			T3B85 T3B80	21.19	19.72 19.79	10.91 11.57	1,001 914	601 554	400 360	
75			T3B75	21.19	19.79	12.25	806	485	321	
70			T3B75						281	
65			T3B/0	21.19	19.93	12.92 8.84	731 658	450 416	242	
60			T3B60	16.79	15.67	9.49	618	410	242	
55			T3B55	16.76	15.71	10.15	579	416	163	
50			T3B50	16.73	15.75	9.98	455	410	100	
45			T3B45	16.73	15.82	10.64	416	416		
40			T3B40	15.82	14.98	10.42	376	376		
35			T3B35	15.16	14.39	10.42	337	337		
30			T3B30	11.88	14.37	7.95	297	297		
25			T3B25	11.88	11.15	8.59	258	258		
70	4	1560	T4B70	16.76	15.5	8.2	731	450	281	
65	•		T4B65	16.73	15.54	8.84	658	416	242	
60			T4B60	16.73	15.61	9.49	618	416	202	
55			T4B55	16.73	15.68	10.15	579	416	163	
50			T4B50	16.73	15.75	9.98	455	455		
45			T4B45	16.73	15.82	10.64	416	416		
40			T4B40	15.82	14.98	10.42	376	376		
35			T4B35	15.16	14.39	10.44	337	337		
30			T4B30	11.88	11.18	7.95	297	297		
25			T4B25	11.88	11.25	8.59	258	258		
35	5	1235	T5B35	11.76	10.99	7.12	250	250		
30			T5B30	11.76	11.06	7.76	223	223		
25			T5B25	11.76	11.2	8.42	148	223		
35	6	975	T6B35	11.76	10.99	7.12	207	207		
30			T6B30	11.76	11.06	7.76	178	178		
25			T6B25	11.76	11.2	8.42	148	148		

(11)

ENGINEERED EXCELLENCE SUPPORTS CUSTOMER NEEDS

SPECIFY SHAKESPEARE CROSSARMS FOR YOUR NEXT PROJECT

Shakespeare composite structures are an ideal choice for power-distribution and power-transmission tangent crossarms. Our composite crossarms can be installed with ease, on any utility pole, whether the pole is a wood, steel, concrete, aluminum, or composite material.

With more than a million crossarms installed over the past 25 years, Shakespeare composite structures provide an exceptional return on investment.

When compared with conventional crossarms, these FRP beams will not rot or splinter like wood and provide a far superior strengthto-weight ratio. The engineered designs are free from knots and imperfections that can cause failure over time. As such, Shakespeare composites are increasingly the preferred choice on new installations and for the replacement of aging infrastructure on power transmission and distribution infrastructure.

Shakespeare offers the widest selection of composite crossarms in the industry with lengths up to 40' in six different profiles from $3.5'' \times 4.5''$ to $4'' \times 7.5''$.

- S-SERIES: 3.5" × 4.5" × .18"
- M-SERIES: 3.5" × 4.5" × .25"-.30"
- H-SERIES: 3.5" × 4.5" × .38"
- T-SERIES: 3.5" × 4.5" × .38"
- I-SERIES: 4" × 6"
- X-SERIES: 4" × 7.5"
- 4"X4" AND 5"X5" CROSSARMS are also available for special applications.

Shakespeare takes a systematic approach to UV protection, and formulates UV inhibitors into the liquid resin mixture from the beginning of the production process. Our crossarm outer shell then is covered with a tightly woven fiberglass veil that is saturated with a UV-inhibitor. This veil provides a resin-rich surface than controls blooming. In postproduction, the finished product receives an exterior coating of our high-performance, UV-protective urethane finish.

Product performance is proven by 25 years of in-field installations. Further, extensive accelerated testing is performed at the factory to verify current-product longevity.

To prevent the risk of internal moisture contamination, inside every Shakespeare tangent crossarm we inject closed-cell polyurethane foam that seals the beam. This allows for easy field drilling along the entire length of the arm during installation, with no special tools required. Also, Shakespeare can pre-drill the arms prior to shipment, as per specified requirements. Download the *Shakespeare Crossarm Products* brochure from www.skp-cs.com to learn more.

RUGGED END CAPS PROVIDE CROSSARM PROTECTION

Shakespeare pioneered the use of highly durable, impact-resistant end caps on composite crossarms. Our crossarm end caps are produced by an injection molding process. During production, these are inserted into the crossarm and foamed into place. Our process ensures end caps will remain securely in place and not come off of the arm.

Shakespeare crossarm and deadend assembly end caps are made of a thermoplastic that exhibits optimal flexibility during temperature extremes. The flexibility is also important because it helps protect the end of the crossarm during the shipping, storing and handling of the product.

SEE THE SHAKESPEARE DIFFERENCE

LAYERS OF INNOVATION AND TRIPLE UV CROSSARM PROTECTION FOR LONG LASTING DURABILITY

Best-in-class urethane finish provides enduring top-layer of UV weathering protection. Durable coating adds up to 20 years of service life and improves electrical properties compared to others.

Superb second-layer of protection is provided with a smooth, polyester-cloth UV veil, a Shakespeare innovation.

100% of fiberglass roving materials are saturated with UV-inhibitor-rich resin, permeating the beam. Also, the roving fiberglass strands enhance strength, providing low-deflection rigidity.

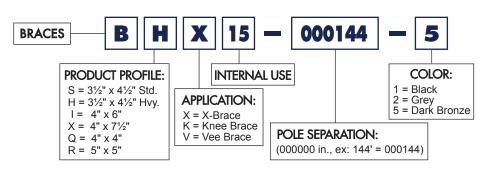

Impact-resistant, injection-molded thermoplastic end caps are sealed to lock out moisture, pollution and other outdoor contaminants.

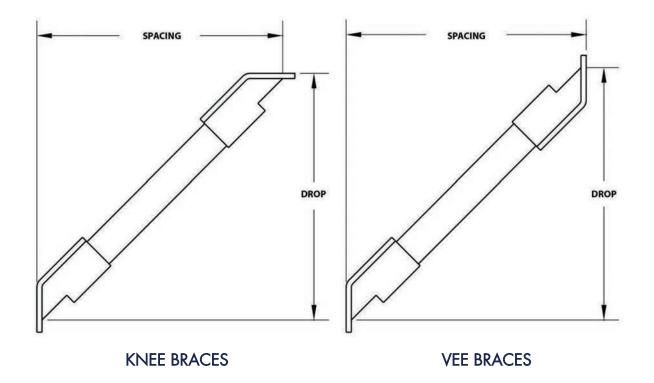
The continuous strand mat material configuration in our pultrusion production process results in exceptional torsional strength and high bearing loads, which improves grid reliability.

For long-life, moisture ingress is prevented with high-density, closed-cell foam. This center core provides strength to the overall profile by supporting the shape of the product when a load is applied. Users can easily field drill the crossarm without inserts.

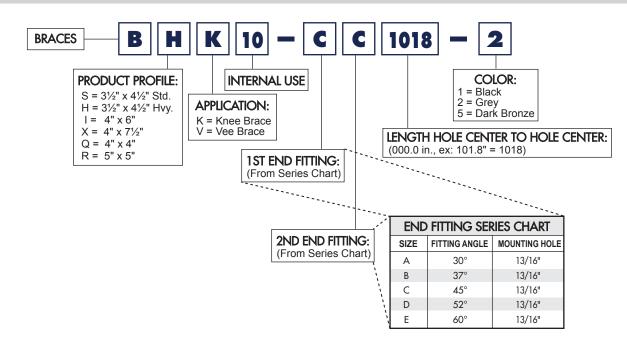
COMPOSITE BRACES ADD SUPPORT AND DURABILITY

COMPOSITE X-BRACES



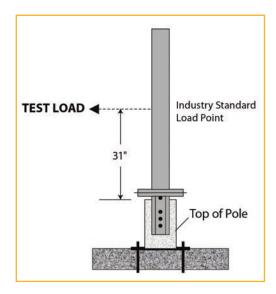

X-BRACES

CATALOG NUMBER	POLE SPACING (in.)	PROFILE DIMENSIONS
BSX15-000144-5	144	3½" x 4½"
BHX15-000144-5	144	31⁄2" x 41⁄2"
BIX15-000144-5	144	4" x 6"
BXX15-000144-5	144	4" x 7 ½"


ORDERING COMPOSITE X-BRACES

COMPOSITE KNEE AND VEE BRACES

ORDERING COMPOSITE KNEE AND VEE BRACES

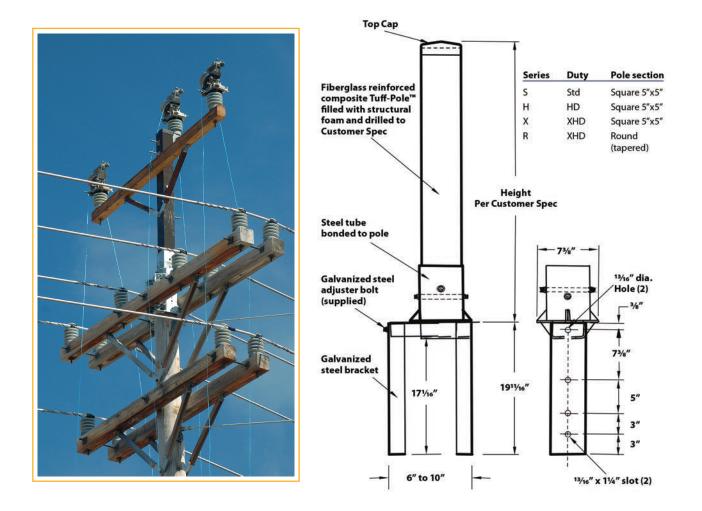


THERE IS ALWAYS ROOM AT THE TOP

SHAKESPEARE TUFF-TOP POLE EXTENSIONS

- Filled with structural foam, a Shakespeare exclusive.
- Available in a range of strength ratings
- Light weight, easily installed
- Unexcelled strength, high load capacities
- Adjustable 6" to 10" for pole diameter (19" to 31" circumference)
- Aesthetically pleasing for any composite, wood, steel, or concrete pole.

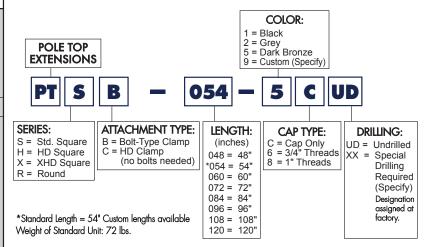
Shakespeare Tuff-Top Pole Extensions provide a convenient, inexpensive, and durable way to add conductors or increase clearence on an existing pole installation, whether composite or other type of pole. These strong, attractive extensions are factory assembled from a length of fiberglass reinforced composite pole, plus a versatile attachment bracket. The pole sections are **filled with a durable, permanent, structural foam** that excludes insects and water and discourages flexing. The versatile attachment brackets either bolt through the pole or, for strongest applications, clamp on. Either way, you can add one or more crossarms, as well as a ridge pin and other attachments. The pole sections come in three standard colors, or you can specify.


PTS Series (left); PTR (center); PTR with clamp style attachment (right)

TUFF-TOP TEST DATA

	ULTIMATE LOAD				
SERIES	(lbs @ 31")	(ft/lbs @ 31")			
PTS	5,500	14,208			
PTH	6,500	16,790			
РТХ	8,500	21,958			
PTR	8,500	21,958			

TUFF-TOP POLE EXTENSIONS



ORDERING TUFF-TOP POLE EXTENSIONS

HOW TO ORDER

The Shakespeare Tuff-Top Pole Extensions ordering logic is shown at the right. Use this checklist and the diagram above to specify the product you need. If you need assistance, just call.

	STANDARD	SPECIFY
Series	S (Std)	
Attachment Type	B (Bolt Through)	
Length	54"	
Color	Dark Bronze (5)	
Сар Туре	C (Cap Only)	
Drilling Pattern	UD (Undrilled)	
Dia. of Drilling Holes	11/16"	
Other		

COMPOSITE BUSS AND SWITCH SUPPORTS

- Greatly reduce outages caused by wildlife intrusion or contact.
- Light weight, high load capacities
- Easily installed using standard construction practice
- Custom fabricated to your specification
- Predrilled to your specifications, or drill on site
- Custom fabricated attachment brackets

STOP THE SWITCHING STATION BARBECUE, AND MAKE YOUR CUSTOMERS HAPPY!

Here come the squirrels! A single squirrel can interrupt thousands of people's dinner, just because the squirrel can't read "High Voltage" on the fence around your switching station. Our strong, attractive fiberglass reinforced composite switch supports are a squirrel's best friend. And yours, too. Those pesky squirrels and other wildlife can poke their noses where they don't belong and not have to notify their next of kin. They can hop onto our fiberglass composite buss and switch supports with a much lower possibility of shorting to ground, causing an outage for your customers.

Shakespeare Composite Structures switch supports are built to your specifications using strong, field-tested fiberglass reinforced composite beams, plus custom fabricated brackets and hardware. The supports can be predrilled for fast assembly on site, or you can field drill them as necessary.

For more information, just call.

Shakespeare - Valmont Composite Structures

- Non-Conductive fiberglass supports and panels
- Simple, fast, inexpensive installation
- Can be modified and cut in the field
- Low maintenance over life of product
- Wide variety of RAL colors available
- Spans up to 18 feet
- Will not rust, rot, or corrode
- Lightweight, can be installed with minimal equipment

Download the Safe Fence Substation Perimeter Barrier product brochure from www.skp-cs.com to learn more.

GENERATIONS OF SUPERB QUALITY AND PERFORMANCE SHAPES THE SHAKESPEARE STORY

Shakespeare's composite product origins date back 65 years. For the utility market, Shakespeare's first innovation was to design and produce the first commercially successful composite light pole in 1967. Building logically on the fiberglass reinforced composite technologies developed for this and other demanding applications, the company's engineers scaled the manufacturing processes up to create a range of strong, durable composite structures, including utility transmission and distribution poles and of course, crossarms.

Over the years, our continued innovation has developed proprietary and custom formulated resins, coatings, and assembly techniques to achieve unmatched quality and durability.

Today, millions of our composite products are performing in every conceivable application, weathering every storm, every season. Impervious to the elements, our fiberglass retains its lustrous beauty for generations, and its strength never wears out or tires. Our composite structures are built to sustain heavy loads and look great doing it.

SHAKESPEARE COMPOSITE PRODUCTS A HISTORY OF FIRSTS

1967	First composite light pole installation
1974	First composite light pole filament winding machine - direct burial
1978	First full surface filament winding machine
1979	First anchor base fiberglass composite poles
1980	First smooth surface fiberglass poles
1986	First light pole arms
1987	First full surface filament winding machine for poles up to 47 feet
1989	First breakaway composite light poles
1991	First CAD/CAM computer controlled filament winding machine
1992	First Lewtex® composite crossarm shipped, company
	later acquired by Shakespeare
1992	First historical reproduction composite light poles
1992	First pultrusion of $5" \times 5"$ straight square composite light poles
1993	First composite distribution poles
1995	First composite transmission poles up to 70 feet
1996	First installation of transmission poles
1997	First Tuff-Pole® programmed process
2000	First composite burial foot
2003	First affordable TL-2 full-scale tested Energy Absorbing Pole
2007	First fiberglass composite poles to 125 feet
2009	First fiberglass composite poles to 130 feet
2009	First non-conductive composite safety fencing
	system for utility substations
2010	First sound-absorptive, non-conductive composite
	safety fence to protect people and utility assets
2014	Acquired by Valmont Industries, Inc. (NYSE: VMI)
	- a global leader in engineered utility structures
2014	Shakespeare is a part of Valmont Composite Structures

2016 Launch T-Series, M-Series composite crossarms 2017 First Matrix[™] crossarm insert

- a composite innovations leader

19845 US Highway 76 • Newberry, SC 29108 USA Phone: 803.276.5504 • 800.800.9008 • Fax: 803.276.8940 skp-cs.com

